23rd Annual Conference
November 19th, 2015
Chicago, IL

2015 Organizers
Hayward Godwin
University of Southampton
hayward.godwin@soton.ac.uk

Audrey Lustig Michal
Northwestern University
audrey.lustig.michal@northwestern.edu

Jennifer L. Bittner
Air Force Research Laboratories
jennifer.l.bittner@gmail.com

Justin M. Ericson
Duke University
justin.ericson@duke.edu
COGNITIVE DEVELOPMENT
EMBODIED COGNITION
PERCEPTION & ACTION
LEARNING SCIENCES
WRITING & READING
CATEGORIZATION
LANGUAGE
DYNAMICS
MEMORY

DEPARTMENT OF PSYCHOLOGY

COGNITIVE SCIENCE

Eric Amazeen
Nia Amazeen
Gene Brewer
Carol Connor
Art Glenberg
Steve Goldinger
Don Homa
Mike McBeath
Sam McClure
Danielle S. McNamara
Clark Presson
Greg Stone
2015 Keynote Address

Dr. Daniel Simons
Visual Cognition Laboratory
University of Illinois, Urbana - Champaign

Real-World Visual Attention

Over the past 40 years, most studies of visual attention have used highly abstract, artificial tasks and simplified stimuli. Much like Ebbinghaus, who used nonsense syllables to isolate the mechanisms that govern forgetting and re-learning both in the lab and the world, attention researchers assume that their controlled studies reveal basic mechanisms of attention, ones that function beyond the confines of the lab. Yet, we rarely test the validity of that assumption. We have developed a rich understanding of the mechanisms governing performance in attention tasks, but we seldom check whether those mechanisms help us understand the role of attention in real problems. I will use examples from my own research program to highlight the need for a new type of ecological perspective, one that values well-controlled laboratory research but that occasionally tests whether insights from simple tasks help solve problems that matter.
cognitive neuroscience
developmental neuroscience
episodic memory
perceptual learning

The UNIVERSITY of OKLAHOMA

Department of Psychology, and
Cellular and Behavioral Neurobiology

eye-witness memory
perceptual organization
judgment and decision-making

DEPARTMENT OF

Psychology

COLLEGE OF LIBERAL ARTS & SCIENCES | UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Visual Perception, Neuroscience, & Cognition

Marcia Grabowecky
Satoru Suzuki

http://groups.psych.northwestern.edu/grabowecky_suzuki/

Steve Franconeri

Visual Thinking

understanding structure graphs
data visualization erp eyetracking

http://visgog.psych.northwestern.edu/

Perception
@Northwestern
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:45</td>
<td>8:00</td>
<td>Murphy & Greene</td>
</tr>
<tr>
<td>7:00/7:30</td>
<td>Registration Opens/Coffee Service</td>
<td>High Perceptual Load Causes Inattentional Blindness & Deafness In Drivers</td>
</tr>
<tr>
<td>7:00/7:30</td>
<td>Opening Remarks</td>
<td>Event Perception as a Control Process for Visual Awareness</td>
</tr>
<tr>
<td>8:00</td>
<td>Roberts & Hout</td>
<td>Categorical Target Templates: Typical Category Members are Found and Identified Quickly During Word-Cued Search</td>
</tr>
<tr>
<td>8:45</td>
<td>Adamo, Cain, & Mitroff</td>
<td>Satisfaction at Last: Evidence for the Satisfaction Hypothesis for Multiple-Target Search Errors</td>
</tr>
<tr>
<td>9:15</td>
<td>Ellis & Turk-Browne</td>
<td>Information Theoretic Complexity Affects Multisensory Perception</td>
</tr>
<tr>
<td>9:30</td>
<td>Mills & Dodd</td>
<td>Moving Thoughts Make for Moving Targets</td>
</tr>
<tr>
<td>9:45</td>
<td>Finlayson, Zhang & Golomb</td>
<td>The Representation and Perception of 3D Space: Interactions Between 2D Location and Depth</td>
</tr>
<tr>
<td>10:00</td>
<td>Tenhundfeld & Witt</td>
<td>The Effects of Interoceptive Attunement on Action-Specific Perception</td>
</tr>
<tr>
<td>10:30</td>
<td>Qian & Liu</td>
<td>Involuntary Attention in the Absence of Visual Awareness</td>
</tr>
<tr>
<td>10:45</td>
<td>Yu & Franconeri</td>
<td>Similarity Grouping as Feature-Based Selection</td>
</tr>
<tr>
<td>11:00</td>
<td>Roper & Vecera</td>
<td>Rewards Shape Attentional Search Modes</td>
</tr>
<tr>
<td>12:00 - 2:15</td>
<td>Poster Session - Stevens Salon D</td>
<td>Memory</td>
</tr>
<tr>
<td>2:30</td>
<td>Damiano & Walther</td>
<td>Content, Not Context, Facilitates Memory for Real-World Scenes</td>
</tr>
<tr>
<td>2:45</td>
<td>Dumitru & Joergensen</td>
<td>Similarity Judgments of Same-Category Object Representations: Effects of Physical Size, Manipulability, and Word Frequency</td>
</tr>
<tr>
<td>3:00</td>
<td>Schurgin & Flombaum</td>
<td>Visual Long-Term Memory Has Weaker Fidelity than Working Memory</td>
</tr>
<tr>
<td>3:15</td>
<td>Dowd, Pearson & Egner</td>
<td>Mind-Reading Without the Scanner: Behavioral Decoding of Working Memory Content</td>
</tr>
<tr>
<td>3:45</td>
<td>Daniel Simons</td>
<td>Real-World Visual Attention</td>
</tr>
<tr>
<td>4:45</td>
<td></td>
<td>Awards & Closing Remarks</td>
</tr>
<tr>
<td>4:45</td>
<td></td>
<td>Keynote Address</td>
</tr>
</tbody>
</table>

Keynote Address

3:45 Daniel Simons Real-World Visual Attention

4:45 Awards & Closing Remarks
SENAPTEC SENSORY STATION
State of the art instrument that measures 10 visual and sensory performance skills. Research friendly with an easy interface, automated data recording, and data management. Visit our website for more details. Contact us for a free online demonstration!

SENAPTEC STROBES
Stroboscopic eyewear available in early 2016. Vary the amount of visual information for your research questions.
Visit our website for special pre-order pricing for OPAM 2015 attendees.

info@senaptec.com www.senaptec.com 1-888-855-2091

Department of Psychology
Cognitive Neuroscience Program
www.psychology.columbian.gwu.edu

Steve Hopkins Spatial Cognition, Memory
Dwight Kravitz Perception, Memory, Imagery
Steve Mitroff Applied Visual Cognition, Attention
John Philbeck Space Perception & Navigation
Larry Rothblat Psychobiology of Learning & Memory
Sarah Shomstein Perception, Attention, Cog. Control
Myeong-Ho Sohn Executive Control, Memory
Guangying Wu Sensory Systems & Hearing

The GW Cog Neuro community is growing & looking for graduate students!

UC DAVIS
Visual Cognition Research Group
Joy Geng
John Henderson
Steve Luck
Lisa Oakes
Ron Mangun
Susan Rivera

http://visualcognition.ucdavis.edu

Study Psychology
AT WRIGHT STATE UNIVERSITY
• Conduct research in the brand new $37 million Neuroscience Engineering Collaboration Building
• Earn the Bachelor of Arts (B.A.) or Bachelor of Science (B.S.) degree
• Earn M.S. and Ph.D. in Human Factors and Industrial/Organizational Psychology
• Psychology Club and Phi Chi Honor Society
• Participate in undergraduate research
• Travel to regional and national conferences
• Scholarships available
wight.edu/psychology

Degree Concentrations
• Behavioral Neuroscience (B.S.)
 The study of the biology of behavior
• Industrial/Organizational (B.S.)
 The application of psychology to the workplace
• Cognition and Perception (B.S.)
 How the brain works when we interact with our environment

Contact us
Department of Psychology
335 Fawcett Hall
(907) 775-4155
psych@wright.edu
wright.edu/psychology
1) Which Parts of an Object are Important When Determining the Relative Size of One Part?
 Arnold & Cooper

2) Object-Based Attention is Oriented More Efficiently Along the Horizontal Meridian than
 the Vertical Meridian
 Barnas & Greenberg

3) How Disguises and Race Affect Face Recognition
 Castro, Peissig, & Bukach

4) Attentional Routines Underlying Causal Perception
 Dink, Liverence, & Franconeri

5) Luminance Versus Lightness in the Object-Reviewing Paradigm
 Fielder & Moore

6) Highly Facilitatory Parallel Processing During Visual Search
 Glavan & Houpt

7) The Canonical Advantage in the Representation of Object Orientation
 Hatfield, Gregory, & McCloskey

8) An Action-Specific Perception Effect that Withstands Feedback
 King, Tenhundfeld, & Witt

9) Visual Search for a Self-Controlled Target with an Angular Basis
 Kobayashi & Yoshida

10) The N-back Task for the Binding of the Vision and Haptic
 Kwon & Yoshida

11) Is Face Impression Similar to Voice Impression? A Useful Cue for Face-Voice Matching
 Mitsufuji & Ogawa

12) The Impact of Race and Gender on the Featural Justification Effect
 Sirridge & Scolaro

13) Dissociable Decoding Signatures of Auditory Objects and Space Size
 Sommer, Teng, Pantazis, & Oliva

14) Influence of Manipulative and Functional Verb on the Affordance Effect
 Takayama & Michimata

15) Object Affordances are Represented in Event Files
 Taylor, Huffman, & Pratt
16) Determining the Confidence Level of Eyewitnesses: Stimulus Type Matters
Wilson & Scolaro

17) Binding Features in Spatial Statistical Summary Representations
Yildirim & Boduroglu

18) Detecting Target Displacements Across Eye Movements: How can Non-targets Work as Landmarks?
Zhang & Golomb

19) Weapon Detection in Image Fusion Using Systems Factorial Technology
Zhang & Houpt

Zweig, Brang, Suzuki, & Grabowecky

Attention

21) Target-Object Integration Interacts with Object Orientation During Object-Based Selective Attention
Al-Janabi & Greenberg

22) Attentional Guidance by Simultaneously Active Visual Working Memory Representations: Evidence from Competition in Saccade Target Selection
Beck & Hollingworth

23) Category-Specific Spatial Biases Are Not Sufficient for Facelike Holistic Processing
Chua & Gauthier

24) Beyond Vision: Exploring the Cross-Modal Nature of Object-Based Attentional Guidance
Collegio, Shomstein, & Bilger

25) Inhibition Drives Early Feature-Based Attention (Even When There are Multiple Distractor Featrues)
Cunningham, Ewen, & Egeth

26) Cultural Differences in Visual Cognition, Do Reliable Differences Exist Between Easterners and Westerners?
Hakim & Simons

27) The Effect of Rumination and Goal Framing on Fluency of Thought
Heater & Scolaro

28) Choosing Attentional Control Settings: Visual Search in an Unconstrained Environment
Irons & Leber

29) Freeze or Fast! Different Impact of Shock on the Congruency Effect
Jeong & Cho
30) Additive Contributions of Spatiotemporal Competition and Task-Relevance to Emotion-Induced Blindness: Evidence from Gaze-Contingent Eye-Tracking
Kennedy, Pearson, Beesley, & Most

31) Figure-Ground Processing and Depth Perception in a Non-Verbal Stroop Task
Koch & Shineski

32) Infrequency Over Positivity: How Distractors Capture Attention
Krasich, Biggs, & Brockmole

33) Opposing Attentional Consequences of Previously Predictive Cues
Lin, He & Lun

34) Four Eyes Aren't Always Better than Two: Collaborative Categorical Multiple-Target Hybrid Search
Lopez, Bennett, Robbins, Godwin, & Hout

35) Resources Not Necessary: Multiple Object Tracking Ability Explained Without Imposed Capacity
Ma, Zhong, Wilson, & Flombaum

36) You Scan While I Search: Examining Visual Search Efficiency and Oculomotor Behavior in a Joint Search Task
McDonnell, Mills, & Dodd

37) Temporal Expectation Weights Visual Signals Over Auditory Ones
Menceloglu, Grabowecky, & Suzuki

38) The Effect of Set-Specific Attentional Capture on Hybrid Visual-Memory Search
Moore & Zeilonka

39) Importance of Individual's Task Set in the Joint Simon Effect
Park, Jeong, & Cho

40) Voluntary Symbolic Control of Attention: High Spatial Validity is not Sufficient
Pauszek & Gibson

41) Do Different Attention Capture Paradigms Measure Different Types of Capture?
Roque & Boot

42) Cutting through the MADness: Investigating Visual Search Efficiency in Dynamic Displays
Scarince & Hout

43) Sentencing Disparities Between Blue-Collar and White-Collar Crimes: Violence Matters
Selby & Scolaro

44) The Spectrum Characteristics of Trypophobic Images Evoke Saccade Trajectory Curvatures
Shirai, Banno, & Ogawa
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>Automatic Shifts of Spatial Attention to Symbolic Cues that Convey Information About Direction and Distance</td>
<td>Sztybel & Gibson</td>
</tr>
<tr>
<td>46</td>
<td>Right Spatial Bias in Visual Statistical Learning</td>
<td>Taga, Yoshizaki, & Kato</td>
</tr>
<tr>
<td>47</td>
<td>Visual Attention is Required for Multiple Object Tracking</td>
<td>Tran & Hoffman</td>
</tr>
<tr>
<td>48</td>
<td>Concurrent Action Overcomes Continuous Flash Suppression</td>
<td>Veto & Einhäuser</td>
</tr>
<tr>
<td>49</td>
<td>Negate Language Mediates Eye-Movements</td>
<td>Vial & Huette</td>
</tr>
<tr>
<td>50</td>
<td>Effects of Temporal Reward Biases on Components of Perceptual Decision Making in ADHD</td>
<td>Weigard, Shapiro, & Huang-Pollack</td>
</tr>
<tr>
<td>51</td>
<td>Failure to Guide Spatial Attention with Monetary Reward</td>
<td>Won & Leber</td>
</tr>
<tr>
<td>52</td>
<td>Do Individual Differences in Attentional Control and Susceptibility to Distraction Predict Inattentional Blindness?</td>
<td>Wright, Roque, Boot, & Stothart</td>
</tr>
<tr>
<td>53</td>
<td>Object Knowledge Influences How Quickly and Easily We Imagine a Scene</td>
<td>Beighley & Intraub</td>
</tr>
<tr>
<td>54</td>
<td>Eye Movements During Reading are Affected by Hand Proximity to the Text</td>
<td>Clement & Brockmole</td>
</tr>
<tr>
<td>55</td>
<td>Heuristics for Processing Visual Relations</td>
<td>Clevenger & Hummel</td>
</tr>
<tr>
<td>56</td>
<td>Binding in Visual Working Memory</td>
<td>Geigerman & Verhaeghan</td>
</tr>
<tr>
<td>57</td>
<td>Differential High Density and Conventional tDCS Effects on Working Memory Performance</td>
<td>Gozenman & Berryhill</td>
</tr>
<tr>
<td>58</td>
<td>Comparison of Spatial Specificity for Perceptual and Working Memory Representations</td>
<td>Harrison & Wilson</td>
</tr>
<tr>
<td>59</td>
<td>Probabilistic Information is Stored in Visual Working Memory</td>
<td>Honig, Ma, & Fougnie</td>
</tr>
</tbody>
</table>
60) Structured Memory Illusions in Visual Working Memory
 Lew & Vul

61) The Relationship Between Visual Attention and Image Memorability
 Li & Yokosawa

62) Don't Lable Me!: Search for Familiar, Nameable Objects vs. Search for Unfmailiar, Novel Objects
 Madrid, Cunningham, Robbins, & Hout

63) Exceeding Working Memory Capacity: Long-Term Memory to the Rescue?
 Moen & Beck

64) Violations of Viusal Rhythm Enhance Subsequent Memory for Words
 Siefke & Sederberg

65) Coarse-Coding of Task Irrelevant Features of Multiple Objects
 Swan & Wyble

66) Interactions Between Visual Working Memory and Selective Attention
 Trevino & Breitmeyer

 Weatherford, Schein, & Erickson

supported by

UNIVERSITY OF
Southampton

Centre for Vision and Cognition
SR Research
EyeLink®
1000 Plus

Multiple Eye Tracking Solutions in One

A single EyeLink 1000 Plus can be used:
• with the head free-to-move as a remote eye tracker
• with the head stabilized for enhanced precision
• concurrently with MRI, MEG, EEG, TMS, and more
• with infants, patients, older adults, non-human primates
• in the lab or off-site (e.g. hospitals, schools, homes)
• for experiments or real-world tasks

FREE Software Upgrades for all EyeLink Models:
• New visualization options in Data Viewer
• Dynamic Interest Area support in Data Viewer
• Screen Recorder software with Data Viewer integration
• Download at www.sr-research.com/dv